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Abstract--We consider inertial effects, for Reynolds numbers  in the range 1~< Re ~< 300, on the 
deformation of  a Newtonian drop in a steady, uniaxial extensional flow. Previous studies of  a deformable 
bubble have demonstrated that there is a qualitative change in the nature of  the shape as the dominant  
stresses at the interface go from viscous to dynamic pressure with increase of  Reynolds number.  In the 
present paper, we focus on the effects of  finite viscosity and density of  the interior fluid. © 1997 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The present paper reports on a computational study of inertial effects on the deformation of a drop 
that is subjected to a uniaxial extensional flow. There has been considerable interest for many years 
in the deformation and breakup of liquid drops immersed in linear shear or extensional flow of 
a second immiscible fluid. 

For the most part, these works have followed the lead of the early pioneering study of Taylor 
(1934), and focused upon the Stokes flow limit for drops that are density-matched to the 
surrounding fluid. Although many applications involve considerably higher Reynolds numbers, 
relatively little theoretical work has been done to assess inertial effects at finite or large Reynolds 
numbers. One noteworthy exception was reported by Dandy and Leal (1989) who numerically 
studied the buoyancy driven motion of a deformable drop in an unbounded fluid at moderate 
Reynolds numbers, 1-300. 

The work most closely related to that reported here was a series of studies by Ryskin and Leal 
(1984a) and Kang and Leal (1987, 1989) who considered both steady and transient deformation 
of an incompressible bubble (perhaps better described as a drop in the limit of vanishing material 
viscosity and density) for a series of steady and time-dependent uniaxial extensional flows. Since 
the objective was to understand deformation and breakup processes due to an imposed velocity 
gradient, gravitational effects were neglected, as they had been in all of the low Reynolds number 
studies. It was shown, in these earlier studies, that the qualitative nature of the bubble deformation 
in extensional flow is very different at high and low Reynolds numbers. In the latter case, as the 
capillary or Weber number is increased, the bubble elongates and develops shapes with relatively 
high curvature at the ends. However, as Reynolds number increases, the deformation is increasingly 
caused by gradients in the dynamic pressure at the bubble surface. Since the dynamic pressure is 
highest at the two ends and at the equator where there are stagnation points, the bubble becomes 
more barrel-like in shape with flattened ends and a cylindrical shape near the equator. 

In this paper, we present numerical solutions for the deformation of a Newtonian drop in a 
uniaxial extensional flow at finite/large Reynolds numbers. Our primary goal is to elucidate the 
effect of the inner fluid on the drop shape, in a regime of parameter space where the dominant 
contribution to the drop shape is due to variations of the dynamic pressure at the surface of the 
drop. Unlike the 'bubble' limit considered earlier, where the density ratio, ( = P/P, between the 
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inner and outer fluid was assumed to be zero so that the only dynamic pressure contributions came 
from the outer fluid, we consider finite values of ~ where there are significant dynamic pressure 
variations also in the interior of the drop. Since the interior flow has stagnation points at the same 
positions on the interface as the exterior fluid, the tendency of the pressure maxima in the outer 
fluid to produce shortened, barrel-like shapes will be compensated (or perhaps even dominated) 
by the pressure maxima in the inner fluid. 

In the limit as Re ~ oct, we would expect the solution to consist of an inviscid, potential flow 
in the exterior fluid, and an inviscid rotational flow inside the drop satisfying the Prandtl-Batchelor 
theorem, with the exception of thin boundary-layers at the interface and along the central symmetry 
plane inside. Hence the shape should become a function only of  the Weber number and the density 
ratio, with the changes due to finite values of the Reynolds number or variations in the viscosity 
ratio appearing as small corrections. We shall see to what extent these expectations are realized 
in the range of Reynolds numbers up to 300 considered here. 

We recognize, of course, that gravitational effects cannot generally be neglected in the presence 
of a finite density difference. The one obvious exception is micro-gravity applications: e.g. 
containerless processing of materials as levitated drops (Doremus and Nordine 1986; Lai 1990; 
Barmatz 1982; Wozniak 1991). The fact is, however, that gravitational effects have been neglected 
in all prior analysis of drop deformation in shear or extensional flows, both at high and low 
Reynolds number. The only 'justification' outside the microgravity arena, is that the result is a 
radically simpler problem from which to begin to understand the effects of velocity gradients on 
flow-induced deformation and breakup processes. Because one solution in the creeping flow limit 
for the shape of a buoyancy-driven drop in a quiescent fluid is a sphere, it might seem at first that 
the deformation due to a mean velocity gradient in the exterior fluid should be the same, whether 
the buoyancy driven motion is included or not, thus justifying the neglect of gravitational effect 
at low Reynolds number in a way that is not possible for the finite Reynolds number cases 
considered here. However, this is not actually true. Koh and Leal (1972) has shown that the 
translational motion can induce very significant deformations of shape in the creeping flow limit 
if the drop is initially deformed (essentially, the solution for drop shape is not unique, but depends 
on initial conditions). Hence, with a non-spherical state created by the shear or extensional flow, 
the addition of a buoyancy-driven translational motion produces an inseparable non-linear 
coupling effect on the drop shape, even in the creeping flow limit. Thus, to properly investigate 
the effect of buoyancy in a shear or extensional flow, at any Reynolds number, we would need 
to consider all possible combinations of the orientation of the axis of symmetry of the shear or 
extensional flow and the gravitational vector. This is clearly impossible from a practical point of 
view and it is this fact which has led everyone who has studied velocity gradient induced breakup 
to consider only the idealized problem in which buoyancy is neglected entirely. Although the results 
are directly applicable in a technological sense only in the micro-gravity limit mentioned earlier, 
we believe that our results provide useful fundamental insights into the role of inertial effects that 
would be obscured by inclusion of buoyancy driven motions, in much the same way that earlier 
studies at low Reynolds number elucidated the role of viscous stresses in drop deformation and 
breakup 

2. PROBLEM STATEMENT 

We consider the deformation of a Newtonian drop of volume 4 3 ~za-, constant viscosity and 
density, fi and/5, subjected to a steady uniaxial extensional flow of a fluid with constant density 
p and constant viscosity/~. The interface is characterized by a uniform surface tension coefficient 

7. 
This axisymmetric problem can be conveniently represented in terms of a cylindrical coordinate 

system (z, a, qS), in which the axis of symmetry is coincident with the z coordinate axis. Due to 
the symmetry of the problem, it is necessary only to solve for the flow in one quadrant of the drop. 

The velocity field far from the drop is given by 

u = E . r ,  ( I )  
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where 

°i] E = E  0 - I  
0 0 

and E is the principal strain rate. 
The governing equations, both inside and outside the drop are the Navier-Stokes and continuity 

equations. If we non-dimensionalize them using the undeformed drop radius a as a characteristic 
length scale, the product (Ea) as a characteristic velocity and ½p(Ea) 2 as a characteristic pressure, 
they take the form 

V-O = 0, (2) 

inside the drop, and 

~. Va = - Vp + ~-g-~v u (3) 

V-u = 0, (4) 

u'Vu = -~Vp + V2u (5) 

for the suspending fluid. The dimensionless parameters that appear in these equations are the 
Reynolds number 

Re = 2ap(Ea)/lt 

the density ratio ~_~6/p, the viscosity ratio 2~/~//a and the internal Reynolds number 

l~e = Re~/2. 

In addition to the far-field condition [1], the non-dimensionalized boundary conditions at the drop 
surface are continuity of  velocity 

= u, ( 6 )  

the kinematic condition for a drop of  fixed shape 

n ' ~  = n . u  = 0 (7 )  

and continuity of  normal stress 

n.(T - T) =~e(V.n)n. (8) 

The dimensionless group that appears in [8] is the Weber number, defined as We = 2p(Ea)2a/y. 
T and t refer to the dimensionless stress tensors for the outer and inner fluids, respectively, and 
are defined as 

8 
T = - p l  + ~-~r 

t = - p I  + 8).f. 

The tangential stress balance takes the form of  a condition relating the internal and external 
vorticities at the surface of  the drop. We solve the free-boundary problem posed above using the 
same numerical technique that was developed by Dandy and Leal (1989) for the problem of  
uniform flow past a deformable drop at large Reynolds numbers. Since the technique was described 
in detail in the earlier paper (Dandy and Leal 1989), we do not describe it here except to say that 
it is a finite difference method, implemented on a numerically generated boundary-fitted 
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orthogonal coordinate system, both inside and outside the drop. The calculations were mainly 
carried out using the Cray Y-MP at the San Diego Supercomputer Center. 

3. RESULTS 

The primary objective of  the present study is to determine the changes in the relationship between 
drop shape and Re, as we vary ff and 2 from the limiting values of  zero that were considered earlier 
(Ryskin and Leal 1984b) to finite values. Since we already know the behavior of  the drop for 

= 2 = 0 (Ryskin and Leal 1983), we only consider ~ and 2 values that are greater than or equal 
to one. 

As in the previous study (Ryskin and Leal 1984b), we found that steady solutions could not 
be obtained beyond certain parameter  values. Based on our earlier work, we believe that these 
critical conditions represent true limit points for the branch of steady solutions (Kang and Leal 
1987). 

3. I. Tests of numerical accuracy 

As a check on the present code, we first compared our results with the results for a bubble as 
found by Kang and Leal (1987). First for Re = 10, We = 0.8, we set 2 = 10 -8 and ~ = 10 -8. Our 
results for the shape compared exactly (O(10-6)) with the results for a bubble. The maximum norm 
of the error for the stream-function was 10 4 and for the vorticity it was 10 -5. In addition, we 
compared the drop shape for Re = 100, We - 2.0, 2 = 10 -~° and ~ = 10 10 with the result for a 
bubble at the same Re and We. There was again excellent agreement. In particular, the scalar 
deformation parameter  Df agreed to within 10 -3 and the vorticity and stream-function agreed to 
within 10 4 (see figure 1). 

In figure 2 we show the deformation as a function of Weber number for Re = 100 using inner 
and outer grids that each have 41 x 41, 51 x 51, 61 x 61, 71 × 71 points. We can see that there 
is very good agreement at low deformations for all cases. The only slight differences occur at the 
higher We. The inset graph shows a blowup view of the change in Df with change in the level of 
discretization for We = 1.5. We can see that the results for Df converge as we move from the 
41 x 41 grid to the 71 x 71 grid with the change from 61 x 61 to 71 x 71 being small. On the basis 
of  these and similar results at other elected values of  Re, we used a 61 x 61 grid for both the outer 
and inner domains for all of  the calculations reported here. 

To establish convergence for each run, we checked the normal stress balance at the interface. 
A difference in the normal stress balance equal to (or smaller than) O(10-3), was assumed to be 
converged. We also checked the velocity continuity condition at the interface. The velocity 
mismatch at the interface converged to within 0.0001 and usually evolved faster than the normal 
stress balance. When these two convergence criteria were met, the maximum norm of the error in 
the governing equations was found to be of  O(10 .3 ) for all cases. 

Let us now look at the influence of the parameters  2, ff and We at various Reynolds numbers. 

Df-- (I- b)/(l + b) 

Figure 1. Drop in an axisymmetric extensional flow. 
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Figure 2. Drop deformation vs Weber number for a Reynolds number of 100; 2 = ~ = 1. Results are 
shown at four different mesh discretization levels from 41 x 41 to 71 x 71. 
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3.2. Resuhs for Re = 1.0 

We begin with a relat ively small  values o f  Re = 1.0. F igure  3 i l lustrates the qual i ta t ive  na ture  
o f  the changes  in d rop  shape with increasing W e b e r  number  for  three different value o f  the viscosity 
ra t io .  In add i t ion ,  the d r o p  de fo rma t ion  results ob ta ined  by Stone and  Leal  (1989) for Re = 0, 
2 = 1.0 are  also included by way  o f  compar i son .  Our  results for  Re = 1 show the same general  
low Reyno lds  n u m b e r  pa t t e rn  o f  d e f o r m a t i o n  tha t  was first seen in the creeping flow limit by Stone 
and  Leal  (1989), with the d r o p  becoming  significantly e longa ted  p r io r  to b reakup .  T h o u g h  the 
d r o p  shapes shown explici t ly in figure 3 are  for  2 = 0.1, they are  representa t ive  o f  the general  
na ture  o f  the d e f o r m a t i o n  at  this Re. In  general ,  we find tha t  at  a cons tan t  We,  the de fo rma t ion  
increases with increas ing 2, as is also true in the creeping flow limit  (Stone and  Leal 1989). 
Wi th  We incremented  in intervals  o f  0.01, the last  po in t  for each curve in figure 3 is the largest  
value o f  W e  for which s teady so lu t ion  was obta ined .  The co r r e spond ing  crit ical  W e b e r  numbers  
a p p e a r  to be We = 0.16, 0.12, 0.09 for  2 = 0.1, 1 and 10. A n o t h e r  way  o f  in terpre t ing  our  results  
is tha t  for each W e / >  0.09, there exists a cri t ical  value o f  2 above  which a s table d r o p  shape does  
not  exist. The  m i n i m u m  We where this is true co r re sponds  to the cri t ical  W e  for the l imit  2 --~ ~ .  
A l t h o u g h  we have no t  car r ied  out  ca lcula t ions  for  2 t> 10, we expect  the results  to become 
insensit ive to 2 for  2 ~> 10 and thus the es t imate  ( W e c r i t ) m i n  ~ 0.09 m a y  not  be too  far  above  
the ac tua l  l imit ing value.  In add i t ion ,  it is wor th  men t ion ing  that  Rysk in  and  Leal  (1984b) 
found  the cri t ical  W e b e r  number  for  a bubble  (2 = 0) at  Re = 1 to be We = 0.25 with a 
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Figure 3. Drop deformation vs Weber number for Re = 1 and ( = l at three different viscosity ratios: 
O 2 = 0.1; [] 2 = 1.0; O 2 = 10. Also shown is the result from Stone and Leal (1989) for 2 = 1 and 

Re = 0. Drop shapes are shown at three values of We for the case 2 = 0.1. 
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Figure 4. Drop deformation vs Weber number for Re = 10. The main curve O - - 0  shows results for 
~. = ~ = 1. The vertical set of points labelled 2 and 3, respectively, represent results for various values of 

> 1 and 2 = 1 at We = 0.5 and 0.6. The set labelled l contains results for We = 0.4 at both ~ > 1, ~ = 1; 
and ~ > 1, ( = 1. The details of the sets 1 3 are shown in the inset where we plot Dr vs either ~ or 2 for 

the three fixed values of We. 

co r r e spond ing  m a x i m u m  s teady de fo rma t ion ,  Dr = 0.4. This  seems to be consis tent  with the results 
shown in figure 3. 

We can also c o m p a r e  our  results with the creeping flow solut ions  o f  Stone and Leal (1989). 
T h o u g h  only the creeping flow results  for ). = 1 is shown in figure 3, the same pa t t e rn  was found 
for 2 = 0.1, 10. I t  can be seen tha t  the degree o f  de fo rma t ion  for any  value of  Ca = W e / R e  is 
increased relat ive to the solu t ions  at  Re = 0. Rysk in  and  Leal  (1984b) found  a s imilar  result  for 
the de fo rma t ion  o f  a bubble  in an extensional  flow, and the s l ender -body  analysis  o f  Ar ivos  and 
Lo for  ),<< 1 also shows slightly increased d e f o r m a t i o n  upon  the inclusion o f  inertia.  

A t  this Re, the viscosi ty ra t io  is the m a j o r  fac tor  in add i t i on  to We which influences de format ion .  
F o r  example ,  an increase in the densi ty  ra t io  f rom ( = 1 to 10 with We = 0.1, 2 = ! (figure 3), 
only  changed  the de fo rma t ion  measure  by  0.01, a very small  effect c o m p a r e d  to the influence 
o f  2. 

3.3. Results for Re = 10.0 

Results  for  Re = 10 are shown in figure 4, inc luding pictures  o f  the d rop  shape for ~. = ( = 1 
at  several  values o f  We. Careful  compa r i son  with the results of  figure 3 shows the first signs o f  
a qual i ta t ive  change  in the d r o p  shape.  In par t icu la r ,  it is evident  tha t  the higher  Reynolds  number  
d r o p  is less e longated  and also more  barrel  shaped.  We also see tha t  the cri t ical  Weber  number  
for b r e a k u p  with ,t = ~ = 1 has gone up f rom We = 0.12 to We = 0.63. 

We have also included results in figure 4 for a number  of  values o f  (),, if) > 1, in o rder  to i l lustrate 
the effect o f  these pa rame te r s  in the d e f o r m a t i o n  (see inset graph) .  We  see that ,  We  = 0.4, the 
d e f o r m a t i o n  increases with )~ (at ~ = 1), up to 2 = 10 but  then becomes  fairly insensitive to fur ther  
increase o f  i .  

I f  we compare  the influence o f  )~ for cases at Re = 1 and Re = 10 which have the same Dr at 
,i = 1, we find that  the sensit ivity to changes  in ), appears  to be o f  the same order  in both  cases. 
F o r  example ,  the change  in Dr as 2 is increased f rom 1 to 10 is essential ly equal  for Re = 1, 
We = 0.06 (figure 3) and  Re = 10, We = 0.4, where Dr ~ 0.11 in bo th  cases for 2 = 1. We can also 
see f rom figure 4 tha t  the densi ty  ra t io  now plays  a significant role, with an increase in ~ yielding 
a significant increase in the de fo rmat ion .  The  detai ls  o f  changes  in Dr with increase of  ( are shown 
in the insert  o f  figure 4 for the three cases m a r k e d  as 1-3. As the internal  densi ty  is increased,  the 
impor t ance  o f  the var ia t ions  o f  the in ternal  pressures also increases. A t  the crudest  level o f  
a p p r o x i m a t i o n ,  the s t agna t ion  pressure at  the axis o f  symmet ry  inside the d rop  compensa tes  for 
that  outs ide  and the d r o p  elongates.  

F o r  Re = 10, the cri t ical  We at  2 = 1, ~ = 1 is a pp rox ima te ly  0.63. Ryskin  and Leal (1984b) 
la ter  K a n g  and  Leal  (1987) de te rmined  the cri t ical  We for bubbles  (2 = 0) to be 0.9, The 
so lu t ions  above,  show tha t  de fo rma t ion  increases with increase in and  ~ for  a fixed W e  number .  
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Thus we expect that the critical We should decrease with increase in the viscosity and density ratios 
but we have not explored this point in detail for this particular Re. 

3.4. Resuhs Jbr Re = 100, 200, 300 

Finally, we have carried out a fairly large set of  computat ions at Reynolds numbers of  100, 200 
and 300. In many regards, the results for these three cases are similar, reflecting the transition to 
a range of Reynolds numbers where both the fluid dynamics and the drop shape are dominated 
by inertial effects. Thus in the first part  of  this section, we shall focus primarily on the case 
Re = 100+ where the most extensive results are available. Later, we shall discuss the role of  Re in 
some detail. 

We begin by considering the effects of  changes in ( and 2 from a qualitative point of  view. For  
this purpose, we show in figure 5 the shapes of  drops for Re = 100, for two values of  2 ( =  1 and 
10) and various values of  We and ~, including the largest We ~ Wecrit+cal in each case. In addition, 
the shapes for three cases with ~" = )+ = 0 are reproduced from earlier works of  Ryskin and Leal 
(1984b). The most obvious trend, apart  from increased deformation with increased We, is that the 
degree of  drop elongation increases with increase in the density of  the interior fluid. The bubble 
pictured at We = 2.1 was the maximum steady deformation achieved in the study of Ryskin and 
Leal (1984b). Subsequent studies of  transient deformation due to Kang and Leal (1989) showed 
that this case corresponded very closely to a true limit point for the existence of steady solutions. 
With increased internal density, the critical We decreases, at least for 2 = O(1), and the final drop 
shapes shown in the last column of figure 5 for ( = 0.1, We -- 1.8 and ( - 1, We --- 1.63 are both 
close to the maximum We for existence of a steady state at these respective values of  ( for 2 = 1. 
Not  only can one see that the critical We is decreased with increase of  ~', but also that the drop 
shape is sufficiently modified that the final steady-state degree of  deformation is substantially 
increased. 

It was shown in previous studies that an apparent  geometric condition signalling the failure of  
steady solutions and the onset of  time-dependent deformation (leading to breakup), was that the 
curvature of  the drop (or bubble) interface parallel to the symmetry axis changes sign from positive 
(concave) to negative (convex) at the central plane of symmetry, i.e. the drop forms a 'waist ' .  We 
have noted earlier, that the expected influence of an increase in the internal density (i.e. the density 
ratio) is to produce increased dynamic pressures in the inner fluid at the interface, with the maxima 
at the stagnation points at the axis of  symmetry and at the central symmetry plane. The internal 

Re = 100 

Wecritical 

We -> 1.0 1.3 
1.63 

~=- 1 ' ~ / ~  
1.8 

Z=-lO 

[ 0 0  We=,.+ 

 =0C) C) <> 
We = 1.0 We = 2.0  We = 2.1 

Figure 5. Drop shapes for Re = 100 at various values of 2, ( and We. The results for 2 = 0 are reproduced 
from Ryskin and Leal (1984b). 
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Figure 6. Deformation vs Weber number at 2 = ~ = 1 for three different Reynolds numbers; C) Re = 100, 
• Re = 200, A Re = 300. 

pressure distribution thus tends to counteract the tendency identified by Ryskin and Leal (1984b) 
for the case ~ = 0, of  the dynamic pressure distribution in the outer fluid to produce a 'barrel '  or 
truncated cylinder. With increase of  ~, the inner fluid pushes the interface in the opposite 
direction--i .e outward at the ends of  the drop and at the equator. The increase in maximum 
deformation prior to loss of  steady solutions, is partially due to the increase of  dynamic pressure 
pushing outward at the ends of  the drop, and partly due to the fact that the dynamic pressure 
maximum at the equator tends to maintain a concave shape and thus delays the formation of a 
waist. 

These qualitative effects of  increased density ratio become even more evident as ~ is increased 
to large values. At ~ = 8 and 20, for example, one can actually see an outward bulge at the equator 
of  the drop. 

A number of  drop shapes are also shown in figure 5 for 2 = 10. However, the influence of 2, 
though modest in magnitude, is quite complex. For low values of ~, increase of  2 is seen to produce 
an increase of  deformation. On the other hand, the cases shown in figure 5, indicated that this trend 
is reversed for larger ~ values. In view of the apparent complexity in behavior, we will postpone 
discussion on the effects of  2 to a point where we display more quantitative data. 

We now turn to a more quantitative presentation of the numerically generated data, presented 
primarily in the form of the scalar deformation parameter,  Dr, plotted as a function of the various 
independent parameters,  Re, We, ~ and ;~. 

We begin in figure 6, with the effects of  Reynolds number on deformation for ~ = )~ = 1. At the 
upper ends, these deformation curves all show increased sensitivity to changes in We, and our prior 
study of the limiting case 2 = ~ = 0 suggests strongly that this is because we are approaching a 
limit point in We, beyond which steady deformed shapes do not exist. Clearly, the effect of  
increased Reynolds number is to decrease the degree of deformation at fixed We and thus to 
stabilize the drop in the sense that the critical We for existence of steady solutions is increased. 
For  Re = 100, 200 and 300, respectively, we estimate the critical Weber numbers to be 1.64, 1.85 
and 1.9. the critical value for a bubble (2 = ~ = 0) at Re = 100, was shown by Ryskin and Leal 
(1984b) to be 2.1. 

Although the effects of  an increase in ~ appear to be relatively straightforward, leading in every 
case to modified shapes with an increase in the degree of elongation of the drop (and thus Dr) and 
a tendency to bulge outward at the equator, effect of  2 on the deformation is not at all 
straightforward. We show (figure 7) the influence of 2 on the drop deformation for several different 
values of  the density ratio at a given We = 1.0 and Re = 100. Clearly, the influence of 2 is strongly 
related to the value of ~. For ~ = 2, when the stagnation pressures in the internal and external fluids 
are perfectly balanced, the deformation is due solely to viscous stresses and it increases with increase 
of  2. This trend is also seen for ~ = 1, and is qualitatively similar to the well-known result (Stone 
and Leal 1989) that the degree of steady deformation increases slightly with increase of  the viscosity 
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Figure  8. D e f o r m a t i o n  vs viscosi ty  ra t io  at  Re = 100 and  several Webe r  numbers  0.5 ~< We  ~< 1.4. 

ratio for viscous dominated flows. We see, on the other hand, that the deformation actually 
decreases with increase of  2 for ( >~ 5---exactly the opposite t r end- -and  this is a much stronger 
effect. The same trend was also found at higher Re and We numbers. For  example, we consider 
five other values of  We in figure 8. In all cases, Dr decreases with increase of  2 for the larger 
values, but increases for ( >/2. Similar results for Re = 200 and 300 are shown in figure 9 for ( = 1. 
At fixed We, the sensitivity of  Dr to changes in 2 is decreased as Re is increased. This latter 
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Figure  9. D e f o r m a t i o n  vs viscosi ty ra t io  for ( = 1, and  Re = 100, 200 and  300. Resul ts  are  shown for 
each Reyno lds  n u m b e r  at  three different values  of  We  = 0.6, 1.0 and  1.5. 
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Drop shape at breakup 

Influence of Density ratio 
F i g u r e  10. A n  i n s t a n t a n e o u s  s n a p s h o t  o f  d r o p  s h a p e s  d u r i n g  t r a n s i e n t  d e f o r m a t i o n ;  ~ = 1, Re  = 100, 

W e  = 1.64, 2 = 1; a n d  ~ = 10, Re  = 100, W e  = 1.64, ). = I. 

observation is essentially a consequence of the fact that the critical We is larger for Re = 300 than 
for Re = 200, so that We is close to the critical value for Re = 200. 

Although the effect of  2 on shape for )~ = O(1) is generally modest, it is clear that even small 
changes in the viscous stresses can have a large effect on deformation for We values that are close 
to the limit point (cf. figure 6). In this region, the increase of deformation with increase of  2 could 
be expected to cause the drop to become unstable (i.e. to pass beyond the limit point for existence 
of steady solutions). An example of this is shown in figure 9 for the case Re = 100, ~ = 1 and 
We = 1.5, which is very near to the limit point for )~ = 1 of  We = 1.63. Unlike the other cases 
shown in figure 9, the results for We = 1.5 and Re = 100 do not plateau with increase of 2. In 
fact, steady solutions do not exist above 2 = 5 at this Reynolds and Weber number combination. 
As expected, an increase in )~ for )~ =- O(1) has the effect of  lowering the critical We for 'breakup' .  

The transition from deformation which increases slightly with increased 2 for ( -  O(1), to 
deformation that decreases with increased 2 for ~ > O(l) ,  reflects a transition from deformation 
due primarily to viscous effects for ~ = O(1), deformation dominated by the dynamic pressure 
distribution for ~ > O(1). As noted previously, the increase in Df with increase of 2 is a feature 
common to all cases where viscous contributions to the normal stress balance are dominant (also 
characteristic, for example, of  low Reynolds numbers). When ~ = 0(1), the dynamic pressure 
contributions from outside and inside the drop essentially cancel, and the increase of  deformation 
with 2 is ultimately due to an increased imbalance of viscous stress contributions to the normal 
stress balance. 

When ~ > O(1), the internal and external stagnation pressure contributions to the normal stress 
balance do not cancel each other out, and for ~ sufficiently large, these dynamic pressure 
contributions become dominant over the viscous contributions in the normal stress balance 
provided only that the Reynolds number is sufficiently large (note: the necessary value of ~ for this 
to occur, decreases as Re increases and the relative strength of the two viscous stress contributions 
is reduced). As we observed earlier, an increase in ( (with We, 2 constant) serves to increase the 
drop deformation as measured by Dr. However, the influence of ~ is coupled to the strength of 
the internal circulation, and this decreases with increase of  2. Since increased dynamic pressure 
contributions from the inner fluid deform the drop in a way that leads to increased values of  Dr, 
whereas a relative increase in the contributions from the outer fluid has the opposite effect, we find 
that for ' large' ~ values, the drop is less deformed (i.e. D,- decreases) with increase of  2. 

4. DISCUSSION 

There are several aspects of this problem that are worth some additional discussion. The first 
is the mode of transient deformation (and presumably breakup) that ensures once the limiting value 
of We is reached for the existence of steady solutions. In the case of  bubbles (or drops with small 

and 2), the loss of steady solutions occurs because of the formation of a waist at the center plane 
of symmetry. In the case of  drops with density ratios greater than one, this mode of breakup is 
not present. Instead, the onset of  breakup seems to be related to the extent of  the deformation. 
Figure 10 shows an instantaneous snapshot of  transient drop shapes for We higher than the critical 
We for ~ = 1 and ~ = 10. It can be seen that the two transient deformation modes are quite 
different. For ~ > 1, there is no formation of a waist at the central symmetry plane. However, there 
is a change in sign of the curvature away from the center that seems to initiate the breakup of the 
drop. 
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A second issue of  some interest is the extent to which the present results, obtained for Re up 
to 300, demonstrate a transition to high Reynolds number asymptotic behavior. We should first 
note that the only existing high Reynolds number asymptotic solution for the motion of  a drop 
in a viscous fluid, so far as we are aware, is the solution of  Harper and Moore (Harper and Moore 
1968) for the buoyancy driven translation of  a spherical drop through an otherwise quiescent fluid. 
However, we can anticipate from their solution that the high Reynolds number structure in the 
present case should consist of  a potential flow solution for the deformed drop in the outer fluid, 
an inviscid solution for the pair of  recirculating toroidal zones or the inner fluid; with boundary 
layers at the drop surface, along the symmetry axis, and along the central symmetry plane inside. 
The issue is what, if anything, we can say based upon this qualitative picture of  the asymptotic 
flow structure, about the expected shape of the drop in the limit as Re-- ,  oo. The simplest case 
is ~ = 1. In that case, if the tangential velocity components in the inviscid flow to the two sides 
of the boundary-layer at the drop surface were equal, the internal and external dynamic pressure 
contributions to the normal stress would balance and, in the limit Re---* oo, the shape would be 
a sphere, independent of  We. In fact, for the translating bubble problem, Harper and Moore 1968 
were able to show that the circulation inside a spherical drop differs from the value obtained for 
a fully inviscid analysis by only an asymptotically small correction 

ac tua l  _ 1 f()~' )~) 
inviscid x//- ~ 

Since the inviscid solution for a sphere, namely the Hill's spherical vortex, exactly satisfies the 
condition of  equal tangential velocity across the interface, it follows that the spherical shape is a 
solution at ~ = 1 for all We provided that Re is large enough for the Harper and Moore (1968) 
analysis to be valid, namely 

-~>>1. 

It may be noted that this latter condition is even more conservative than the obvious requirement 
that both the outer and inner Reynolds numbers be large which, for ~ = l, requires 

Re >> 1, Re/,~ >> 1. 

Now, it is of interest to examine the solutions obtained in the present study to see whether they 
show evidence of  asymptotic behavior at the largest Reynolds numbers which is consistent with 
this picture. If we return to figure 6, which shows calculated results for the deformation parameter, 
Df vs We for ~ -- l, there seems to be some convergence of results with increase of  Re, but no 
evidence of any transition toward the result D ~  for all We that would be inferred from the 
preceding discussion as representing the Re-- ,  ~ limiting behavior. One possibility is that 
Re = 300 is simply not large enough. It is perhaps worth noting in this respect that the analysis 
of  Harper and Moore (1968) would require a Reynolds number of  3 × 104 for ,~ = l and ~ = 1 to 
yield a viscous correction of  less than 5% in the internal circulation, and much larger values for 
,~ ~> 1. Another possible explanation is that the solution corresponding to D ~  for all We is not 
unique, and that the result for Re = 300 is actually a reasonable qualitative indicator of  the 
expected behavior for Re--~ ~ on a second branch of steady solutions that evolves from Dr -- 0 
for W e ~ 0 .  It is, in fact, likely that the solution branch D~--0 cannot be reached by simply 
increasing Re from an initial state that is non-spherical. Harper (1972) has already pointed out, 
in the case of  the translating drop, that a sphere is the only shape for which an inviscid solution 
can be found that has a continuous tangential velocity across the interface at all points. Hence, 
we may expect an imbalance of the dynamic pressures even for ~ --- l for any shape that is not 
spherical and this suggests the possibility of  a solution branch with finite deformation even for 
Re--~ ~ .  With the solutions that we have, we are not able to distinguish between these possible 
explanations of the difference between the behavior in figure 6, and that inferred from the Harper 
and Moore (1968) analysis of  a translating spherical bubble. 

One final point for discussion is the fact that we have discovered a purely empirical correlation 
for the high Reynolds number cases (100-300) that does a very good job of  reducing all of  the 
results for the shape at various values of  2 and ( to a simple curve. This correlation is based upon 



572 s. R A M A S W A M Y  and L. G. LEAL 

Re = 100.0 

0.25 • ;~-2 o o 
X=3 • o o 

0.20 • ;~.=4 I o O i ° o  o 

oo  t !  " °  
1::3- 0.15 , ,X=IO o • § O o  

o Q Oo 
+ k = 2 0 _  o "~'= o 

0 .00  ~ . . . . . . .  
0.0 0.5 1.0 1.5 2.0 

W e  

Figure 11. Deformation vs Weber number at Re = 100, for all values of ~, and for )o <~ 20. 

the following observations.  First, based upon the deformat ion measure, Dr, increases in the density 
ratio are found to produce an increase in deformation.  Second, except for a small range of  ~ values 
near unity, where the shape is relatively insensitive to 2 (cf. figure 7), increases in 2 are found to 
produce a decrease in Dr, at least up to ,k ~ O(10), beyond which the shape becomes insensitive 
to 2 (cf. figure 7 or figure 8). We can think of  these changes as suggesting that  increases in ~ or 
decreases in 2 are equivalent to subjecting the drop  to a higher Weber  number.  The simplest 
suggestion for data correlat ion that is consistent with this not ion is to plot Df vs a modified or 
rescaled Weber  number,  i.e. 

W e * = W e [ l + c ( ~  l ~ ) ]  

where we have chosen arbitrarily to use ~ = 1 as our  base case. Such a simple form of  rescaling 
cannot  be expected to work for 2 > O(10) because it does not  capture the sensitivity o f  shape to 
both  ~ and 2 at large 2. We have also not  a t tempted to deduce any scaling dependence for Re. 
The result of  figure 6 suggest that  we do not have numerical data  over a significantly wide range 
o f  Re values to justify any such scaling. 

An  example o f  the applicability o f  this approach  of  this proposed rescaling for )~ <~ 20 and 
Re = 100 (where we have numerical data  over a wide range o f  ~ values), can be seen by compar ing  
the results shown in figure 11 for Dr vs We with the results in figure 12 where the same data  is 
plotted vs the rescaled Weber  number  We* with a value o f  the coefficient c = 0.1. A composi te  
o f  all available results for Re = 100, 200, 300 and 2 ~< 10 is shown in figure 13, again as a function 
o f  We* for the same value of  c. The spread shown is primarily due to the same Reynolds number  
dependence that  was shown in figure 6. 

Re = 100.0 
. . . .  , . . . .  , . . . .  , w ° • - , 

0.25 • ;~-2 ~ ~, o 

f,;o 
- • i 0.15 

• X=lO ,...~ ~o 
0.10 +2,,=20 r I g  

0.05 j °=•°°l~ '~' 

0.00 ,o  . . . . . . . . . . . . . . . . . .  
0.0 0.5 1.0 1.5 2.0 

We" 
Figure 12. Deformation vs the modified Weber number, We* = We(l + 0.1(~ - 1)/2) for Re = 100 and 

all values of ~, and 2 ~< 20. 
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Figure 13. Deformation vs We* for three values of Re = 100, 200 and 300, and all values of (, and 2 ~< 20. 
The change observed with Reynolds number is similar to figure 6. 

We do not know whether the simple correlation of shapes for this modest range of Reynolds 
numbers and 2(1 ~< 2 ~< 20) will find any practical use. However, it clearly does a good job of  
accounting for variations in ~ and 2. We have attempted to provide a more rational explanation, 
based upon ideas about the expected asymptotic solution structure for large Re, but have been 
unsuccessful and probably should not be surprised by this in view of  the likelihood (stated earlier) 
that Re = 300 is much too low to exhibit limiting behavior. 
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